首页 > 栏目首页 > 基金 >
 
 

平方平均数_平方平均数 焦点滚动

2023-06-30 17:06:22  来源:互联网

1、调和平均数≤几何平均数≤算术平均数≤平方平均数。


【资料图】

2、调和平均数:Hn=n/(1/a1+1/a2+...+1/an)几何平均数:Gn=(a1a2...an)^(1/n)算术平均数:An=(a1+a2+...+an)/n平方平均数:Qn=√ [(a1^2+a2^2+...+an^2)/n]这四种平均数满足 Hn ≤ Gn ≤ An ≤ Qn。

3、扩展资料:区别算术平均数和调和平均数是平均指标的两种表现形式。

4、算术平均数和调和平均数并非两类独立的平均数;算术平均数和调和平均数的数值之间并无直接关系,也不存在谁大谁小的问题;不能根据同一资料既计算算术平均数,又计算调和平均数,否则就是纯数字游戏,而非统计研究。

5、2、关系:算术平均数、调和平均数、几何平均数是三种不同形式的平均数,分别有各自的应用条件。

6、进行统计研究时,适宜采用算术平均数时就不能用调和平均数或几何平均数,适宜用调和平均数时,同样也不能采用其他两种平均数。

7、但从数量关系来考虑,如果用同一资料(变量各值不相等)。

8、计算以上三种平均数的结果是:算术平均数大于几何平均数,而几何平均数又大于调和平均数。

9、当所有的变量值都相等时,则这三种平均数就相等。

10、它们的关系可用不等式表示:H≤G≤X参考资料:百度百科-调和平均数参考资料:百度百科-算术平均数参考资料:百度百科-平方平均数参考资料:百度百科-几何平均数。

本文到此分享完毕,希望对大家有所帮助。

关键词:

  
相关新闻
每日推荐
  • 滚动
  • 综合
  • 房产